
FRICO

VLP

Bauteile

VLP, Druckunabhängiger und modulierender Ventilsatz

VLP15LF

Тур		Eigenschaften
TAC15LF	Druckunabhängiges 2-Wege-Regel- und 2-Wege-Einstellventil	Niedriger Durchfluss, DN15
SDM24	Modulierender Stellmotor 24 V	24 V~
AV15	Absperrventil	DN15
ST23024	24 V Transformator für 1-7 Stellmotoren	

VLP15NF

Тур		Eigenschaften
TAC15NF	Druckunabhängiges 2-Wege-Regel- und 2-Wege-Einstellventil	Normaler Durchfluss, DN15
SDM24	Modulierender Stellmotor 24 V	24 V~
AV15	Absperrventil	DN15
ST23024	24 V Transformator für 1-7 Stellmotoren	

VLP20

Тур		Eigenschaften
TAC20	Druckunabhängiges 2-Wege-Regel- und 2-Wege-Einstellventil	Normaler Durchfluss, DN20
SDM24	Modulierender Stellmotor 24 V	24 V~
AV20	Absperrventil	DN20
ST23024	24 V Transformator für 1-7 Stellmotoren	

VLP25

Тур		Eigenschaften
TAC25	Druckunabhängiges 2-Wege-Regel- und 2-Wege-Einstellventil	Normaler Durchfluss, DN25
SDM24	Modulierender Stellmotor 24 V	24 V~
AV25	Absperrventil	DN25
ST23024	24 V Transformator für 1-7 Stellmotoren	

VLP32

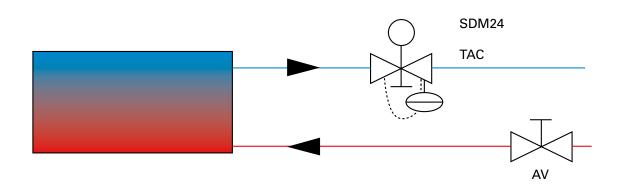
Тур		Eigenschaften
TAC32	Druckunabhängiges 2-Wege-Regel- und 2-Wege-Einstellventil	Normaler Durchfluss,
IAGSZ	Druckunabhangiges 2-wege-neger-und 2-wege-Enistenventh	DN32
SDM24	Modulierender Stellmotor 24 V	24 V~
AV32	Absperrventil	DN32
ST23024	24 V Transformator für 1-7 Stellmotoren	

32

VLP, Druckunabhängiger und modulierender Ventilsatz

Druckunabhängiges Regel- und Einstellventil mit modulierendem Stellmotor und Absperrventil. DN15/20/25/32. 24 V.

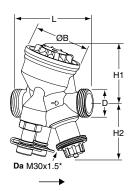
Der Ventilsatz umfasst Folgendes:


- TAC (TA Compact-P), druckunabhängiges Regel- und Einstellventil
- SDM24, modulierender Stellmotor 24 V
- AV, Absperrventil
- ST23024, 24 V Transformator für 1-7 Stellmotoren

Das Absperrventil (AV) besteht aus einem Kugelventil, das entweder offen oder geschlossen ist und wird zum Abschalten des Durchflusses, z. B. bei Wartungsarbeiten, eingesetzt.

Mit dem Regel- und Einstellventil (TAC) lässt sich der Wasserstrom manuell fein einstellen oder abstellen. Das TAC ist vom Differenzdruck unabhängig, wodurch eine stabile und präzise Regulierung gewährleistet wird (sorgt für den richtigen Durchfluss zum Heizelement, selbst wenn sich der Differenzdruck im Rest des Rohrsystems ändert). Der Wasserstrom wird mit dem grauen Handrad am Ventil eingestellt.

Der Stellmotor (SDM24) ist moduliert und gibt die korrekte Wärme ab. Die SIRe lässt sich so einstellen, dass ein geringer Durchfluss durch das Ventil möglich ist. Dadurch kann eine schnelle Heizleistung gewährleistet werden, wenn die Tür geöffnet wird, außerdem wird auch ein gewisser Frostschutz geboten.


Der Ventilsatz steht in 4 Abmessungen zur Verfügung, DN15 (1/2 Zoll), DN20 (3/4 Zoll), DN25 (1 Zoll) und DN32 (1 1/4 Zoll). Wird mit der SIRe Advanced eingesetzt oder mit einem geeigneten Thermostat ergänzt.

Druckunabhängiges 2-Wege-Regel- und 2-Wege-Einstellventil TAC (TA Compact-P)

Abmessungen und technische Daten

Тур	DN	Durchfluss	D	Da*1	L	H1	H2	В	Gewicht
					[mm]	[mm]	[mm]	[mm]	[kg]
TAC15LF	15	Niedriger	G3/4	M30x1,5	74	55	55	54	0,54
TAC15NF	15	Normaler	G3/4	M30x1,5	74	55	55	54	0,54
TAC20	20	Normaler	G1	M30x1,5	85	64	55	64	0,69
TAC25	25	Normaler	G1 1/4	M30x1,5	93	64	61	64	0,79
TAC32	32	Normaler	G1 1/2	M30x1,5	112	78	61	78	1,5

^{*1)} Verbindung zum Stellmotor.

Druckklasse: PN16

Max. Arbeitstemperatur: 90 °C Max. Arbeitstemperatur: 0 °C

Abhub: 4 mm

Material

Ventilgehäuse: AMETAL® Ventileinsatz: AMETAL® Kegel: Rostfreier Stahl Spindel: Rostfreier Stahl

Spindeldichtung: O-Ring aus EPDM

Δp einsatz: PPS

Membrane: EPDM und HNBR

Feder: Rostfreier Stahl

O-Ringe: EPDM

AMETAL® ist eine entzinkungsbeständige Legierung.

Medien:

Wasser oder neutrale Flüssigkeiten, Wasser-Glykol-Gemische.

Durchflussbereiche:

Der Durchfluss (q_{max}) kann innerhalb des angegebenen Bereiches stufenlos eingestellt werden:

DN 15 LF: 44-245 l/t

DN 15 NF:88-470 l/t

DN 20: 210-1150 l/t

DN 25: 370-2150 l/t

DN 32: 800 - 3700 l/t

 q_{max} = l/h bei der jeweiligen Einstellung und voll geöffnetem Regelkegel.

Differenzdruck (∆pV):

Max. Differenzdruck (ΔpV_{max}):

400 kPa = 4 bar

Min. Differenzdruck (ΔpV_{min}):

DN15, DN20 = 15 kPa = 0,15 bar

DN25, DN32 = 23 kPa = 0.23 bar

(Gilt für Einstellung 10, vollständig geöffnet. Für andere Einstellungen wird ein niedrigerer

Differenzdruck benötigt.)

 ΔpV_{max} = Maximal zulässiger Differenzdruck

über dem Ventil um die angegebenen

Leistungen zu gewährleisten.

 ΔpV_{min} = Minimal erforderlicher

Differenzdruck über dem Ventil, für die

richtige Funktion der Differenzdruckregelung.

Leckrate:

Leckrate ≤ 0,01% von max. q_{max} (Einstellung 10) und korrekte Durchflussrichtung. (Klasse IV entsprechend EN 60534-4).

Anschlüsse:

Außengewinde nach ISO 228

Kennzeichnung:

TA, IMI, PN 16, DN und Durchfl usspfeil Graues Handrad: TA-COMPACT-P und DN. Für Ausführung mit geringem Durchfluss auch LF.

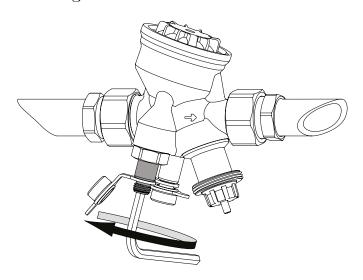
Einsatzbereich:

Mit dem Regel- und Einstellventil (TAC) lässt sich der Wasserstrom manuell fein einstellen oder abstellen. Das TAC ist vom Differenzdruck unabhängig, wodurch eine stabile und präzise Regulierung gewährleistet wird (sorgt für den richtigen Durchfluss zum Heizelement, selbst wenn sich der Differenzdruck im Rest des Rohrsystems ändert). Der Wasserstrom wird mit dem grauen Handrad am Ventil eingestellt.

Funktionen:

- Regelung
- Voreinstellung (max. Durchfluss)
- Steuervorrichtung Differenzdruck
- Messung (ΔH, T, q)
- Abschaltung

Geräusche

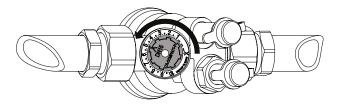

Damit Geräusche in der Anlage vermieden werden, muss das Ventil richtig installiert sein und das Wasser entgast werden.

Messung

Durchflussmessung q

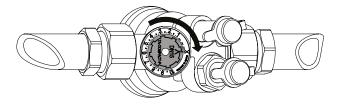
- 1. Entferenen Sie den Antrieb.
- 2. Schließen Sie das IMI TA*-Messgerät an die Messnippel an.
- 3. Geben Sie die Ventiltype, Dimension und Handradposition ein und der Durchfluss wird angzeigt.

Messung von ΔH



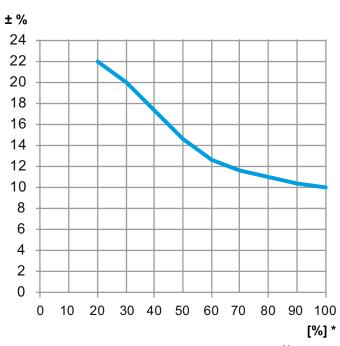
- 1. Entfernen sie den Antrieb.
- 2. Schließen sie das Ventil.
- 3. Der Differenzdruckregler wird durch Öffnen des Messnippels mit einem 5mm Inbusschlüssel um ≈1 Umdrehung entgegen dem Uhrzeigersinn außer Betrieb gesetzt.
- 4. Schließen sie das IMI TA*-Messgerät an und führen sie die Messung durch.

ACHTUNG: Vergessen Sie nicht den Bypass mit dem Messnippel nach der Messung wieder zu schließen!


^{*} www.imi-hydronic.com

Einstellung

1. Stellen Sie das Handrad auf die benötigte Voreinstellung, z.B. 5.0.


Absperren

1. Drehen Sie das Handrad im Uhrzeigersinn auf die Stellung X.

Messgenauigkeit

Größte Durchfl ussabweichung bei verschiedenen Einstellungen.

*)Voreinstellung in % von komplett geöffnetem Ventil.

Dimensionierung

- 1. Wählen Sie das Ventil in der kleinsten Dimension, das den benötigten Nenndurchfl uss mit einem gewissen Sicherheitszuschlag ermöglicht, siehe " q_{max} -Werte". Die Einstellung sollte so weit wie möglich offen sein.
- 2. Prüfen Sie, ob das verfügbare ΔpV im Bereich des Arbeitsbereiches von 15-400 kPa oder 23-400 kPa liegt.

Hubkraft

Arbeitsbereich: X (geschlossen - voll geöffnet)

= 11,6 - 15,8

Schließmaß: 11,6 mm und Hub 4,2 mm Schließkraft: Min. 125 N (max. 500 N)

Der max. empfohlene Druckverlust für die Ventil/Antrieb Kombination als Schließdruck ($\Delta pV_{geschlossen}$) und zur Erfüllung der angegeben Leistung (ΔpV_{max}).

	kPa*
DN15	400
DN20	400
DN25	400
DN32	400

*) Schließkraft 125 N.

 $\Delta pV_{geschlossen}$ = Der maximale Differenzdruck gegen den das Ventil mit einer spezifizierten Motorkraft geschlossen werden kann, ohne die Leckrate zu überschreiten.

 ΔpV_{max} = Maximal zulässiger Differenzdruck über dem Ventil, um die angegebenen Leistungen zu gewährleisten.

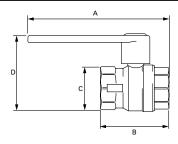
q_{max} Werte

Einstellung

	1	2	3	4	5	6	7	8	9	10
DN15LF	44	71	97	123	148	170	190	210	227	245
DN15	88	150	200	248	295	340	380	420	450	470
DN20	210	335	460	575	680	780	890	990	1080	1150
DN25	370	610	830	1050	1270	1490	1720	1870	2050	2150
DN32	800	1220	1620	2060	2450	2790	3080	3350	3550	3700

 $\mathbf{q}_{\text{\tiny max}}$ = l/h für jede Voreinstellung und bei vollständig geöffnetem Ventilkegel.

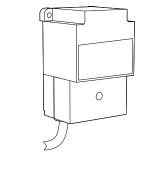
LF = geringer Durchfluss

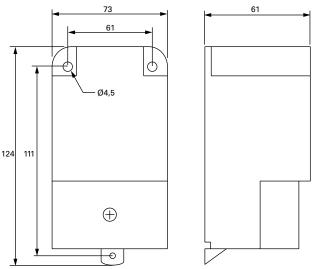


Absperrventil (AV15/20/25/32)

Transformator (ST23024)

Abmessungen und technische Daten


Abmessungen und technische Daten

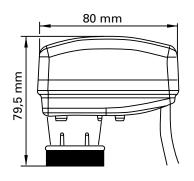


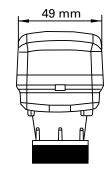
Тур	DN	Α	В	С	D	Gewicht
		[mm]	[mm]	[mm]	[mm]	[kg]
AV15	15	119	57	25	57	0,2
AV20	20	130	57	32	70	0,3
AV25	25	140	62	42	85	0,3
AV32	32	178	81	57	104	0,5

Einsatzbereich

Mit dem Absperrventil wird der Wasserstrom zum Gerät unterbrochen, es besteht aus einem Kugelventil, das entweder offen oder geschlossen ist. Das Absperrventil verfügt über keine Justierfunktion und wird nur zur Wartung und Instandhaltung verwendet.

Primärspannung	230 V	47-63 Hz
Sekundärspannung	24 V	7 VA, 292 mA
Schutzart	IP 44	
Kabellänge	2 m	
Gewicht	1,0 kg	


Einsatzbereich


Der Transformator wird zwischen dem SIReB1(X) und dem Stellmotor angeschlossen und versorgt den Stellmotor mit einer Spannung von 24 V.

Stellmotor (SDM24)

Abmessungen und technische Daten

Funktionsweise	Modulationsstrom 0-10 V			
Netzspannung	24 AC ±15%, 50-60 Hz			
Stromverbrauch	2,5 VA bei max.			
	Stromversorgung			
	1,5 W - aktiv			
Nennkraft	120 N +30% / -20%			
Maximaler Hub	6 mm (3,2 / 4,3 / 6)			
Laufzeit	8 s/mm			
Schutzart	IP43			
Einstellgewinde	M30x1,5			
Kabel	$L = 1.5 \text{ m}, (3 \times 0.35 \text{ mm}^2)$			
Umgebungs	0 - 50°C, nicht kondensierend			
betriebsbedingung	·			
Lagerbedingungen	-20 - 65 °C nicht kondensierend			
Max.				
Wassertemperatur	95 °C			
Wassertemperatur Geräuschpegel	95 °C <30 dB(A)			
·				
Geräuschpegel	<30 dB(A)			
Geräuschpegel Gewicht	<30 dB(A) 0,2 kg			
Geräuschpegel Gewicht	<30 dB(A) 0,2 kg Weiss halbtransparent PA66 - Glas + Mineralwerkstoff (insgesamt 30%) ABS+PC			
Geräuschpegel Gewicht Farbe	<30 dB(A) 0,2 kg Weiss halbtransparent PA66 - Glas + Mineralwerkstoff			
Geräuschpegel Gewicht Farbe	<30 dB(A) 0,2 kg Weiss halbtransparent PA66 - Glas + Mineralwerkstoff (insgesamt 30%) ABS+PC			
Geräuschpegel Gewicht Farbe Materialgehäuse	<30 dB(A) 0,2 kg Weiss halbtransparent PA66 - Glas + Mineralwerkstoff (insgesamt 30%) ABS+PC Kelon A FR CETG/300-VO			

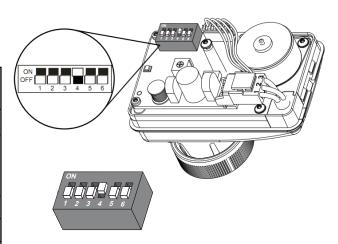
Betriebsanzeige

OFF	0	Keine Stromversorgung
Grün Blinken	*	Bewegt sich in Position
Grün Blinken	*	Vollführt einen Bestätigungszyklus zur Endposition
Grün Dauerlicht	*	Position erreicht
Rot Blinken	*	Zyklus
Rot Dauerlicht	*	4/20mA oder 2/10Vdc Signal fehlt

Einsatzbereich

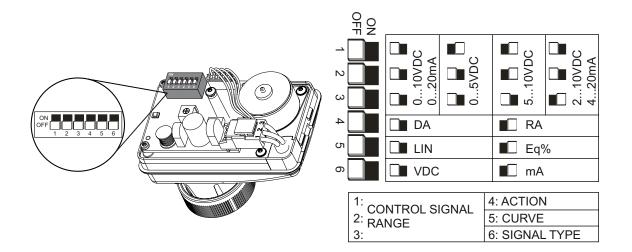
Der Stellmotor (SDM24) ist moduliert und gibt die korrekte Wärme ab. Die SIRe lässt sich so einstellen, dass ein geringer Durchfluss durch das Ventil möglich ist. Dadurch kann eine schnelle Heizleistung gewährleistet werden, wenn die Tür geöffnet wird, außerdem wird auch ein gewisser Frostschutz geboten.

Funktionsweise

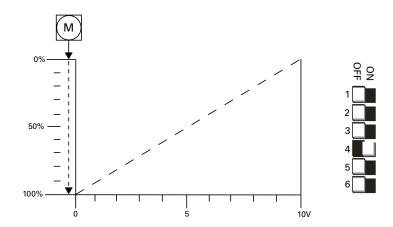

Der Stellmotor wird über ein 0-10-V-Signal gesteuert.

Das Ventil ist geöffnet und in einem normalen Betriebszustand. Der Stellmotor muss im "umgekehrten Betriebsablauf" sein, d.h. der DIP-Schalter Nr. 4 sollte auf ON gestellt sein. Das bedeutet, dass das Ventil bei 10 V nicht beeinflusst wird, d.h. vollständig für Wärmezufuhr geöffnet ist. Im geschlossenen Zustand besteht dennoch eine Ausgangsspannung von 0,5 V damit ein geringer Durchfluss durch das Ventil möglich ist

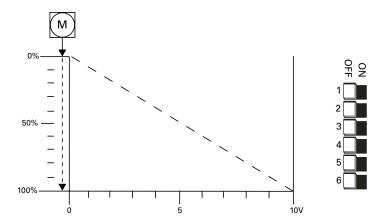
Der Stellmotor kalibriert sich selbst und stellt auch die Endstellung selbst ein.


DIP-Schalter - Einstellungen

Der SDM24 lässt sich mit den DIP-Schaltern verstellen, die sich unter der Abdeckung des Stellmotors befinden. Damit der SDM24 mit SIRe funktioniert, sollte der DIP Nr. 4 auf ON gestellt sein.

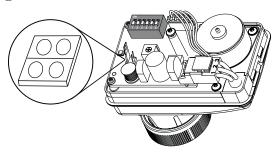


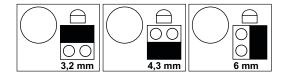
Einstellungen



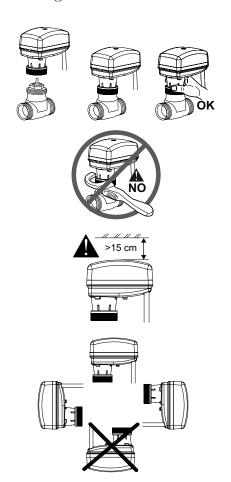
Umgekehrter Betriebsablauf, DIP4 = ON

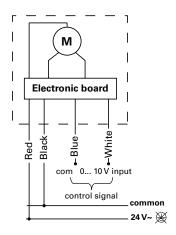
Einstellung anzuwenden bei Verwendung mit SIRe


Direkter Betriebsablauf, DIP4 = OFF



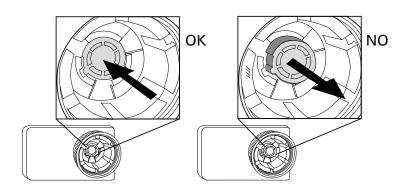
Änderung der Hubhöhe


Der Hub ist bei der Lieferung werkseitig auf 4,3 mm eingestellt. Er kann auf 3,2 mm oder 6,0 mm verstellt werden, wenn der Stellantrieb mit einem Ventil von einem anderen Hersteller, dass nicht im Manual beschrieben wird, verwendet wird. Der Hub wird durch Verschieben des Jumpers wie folgt geändert:


Montage

Wenn die Stromversorgung abgeschaltet ist, ist der Stellmotor auf dem Ventil zu befestigen.

Elektrische Leitung


Alle elektrischen Verbindungen sind von einem Elektroinstallateur auszuführen.

ACHTUNG!

Wenn der Stellantrieb eingeschaltet wurde, überprüfen Sie, dass der Antriebsstab innerhalb des Antriebes in der innersten Position ist, bevor der Antrieb auf das Ventil montiert wird.

Alternativ verwenden Sie den DIP-Schalter Nr. 4, wenn dieser auf "umgekehrten Betriebsablauf" gestellt ist - stellen Sie sieher, dass SIRe Wärme anfordert.

Main office

Frico AB Industrivägen 41

SE-433 61 Sävedalen mailbox@frico.se Sweden www.frico.net

For latest updated information and information about your local contact: www.frico.net.

Tel: +46 31 336 86 00

